Rozložte na součin:
$\huge 24x-9y=$
$24x-9y=3(8x-3y)$
$\huge 8x^{2}+5x=$
$8x^{2}+5x=x(8x+5)$
$\huge -9a^{2}b^{3}c^{5}-6a^{3}b^{3}c=$
$-9a^{2}b^{3}c^{5}-6a^{3}b^{3}c=-3a^{2}b^{3}c(3c^{4}+2a)$
$\huge 6x^{2}y^{3}-8xy^{3}+10x^{3}y^{2}=$
$6x^{2}y^{3}-8xy^{3}+10x^{3}y^{2}=2xy^{2}(3xy-4y+5x^{2})$
$\huge 84xy^{4}z^{5}-24x^{2}y^{2}z^{4}+60xy^{3}z^{3}=$
$84xy^{4}z^{5}-24x^{2}y^{2}z^{4}+60xy^{3}z^{3}=12xy^{2}z^{3}(7y^{2}z^{2}-2xz+5y)$
$\huge 8r-7s+3t(8r-7s)=$
$8r-7s+3t(8r-7s)=(8r-7s)+3t(8r-7s)=(8r-7s)(1+3t)$
$\huge 9r-2s-6t(2s-9r)=$
$9r-2s-6t(2s-9r)=(9r-2s)-6t(2s-9r)=-(2s-9r)-6t(2s-9r)=(2s-9r)(-1-6t)$
$\huge 6r-5t(s-6r)-s=$
$6r-5t(s-6r)-s=6r-s-5t(s-6r)=-1(s-6r)-5t(s-6r)=(s-6r)(-1-5t)$
$\huge 3x+3y+xz+yz=$
$3x+3y+xz+yz=3(x+y)+z(x+y)=(x+y)(3+z)$
$\huge 5x-25+xy-5y=$
$5x-25+xy-5y=5(x-5)+y(x-5)=(x-5)(5+y)$
$\huge x^{3}+4x^{2}-4x-16=$
$x^{3}+4x^{2}-4x-16=x^{2}(x+4)-4(x+4)=(x+4)(x^{2}-4)=(x+4)(x+4)(x-4)$
$\huge x^{3}+x^{2}-x-1=$
$x^{3}+x^{2}-x-1=x^{2}(x+1)-1(x+1)=(x+1)(x^{2}-1)=(x+1)(x+1)(x-1)$